Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images
نویسندگان
چکیده
To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.
منابع مشابه
Motion Blurred Image Restoration based on Super-resolution Method
Motion blur is a typical and common degradation in surveillance system. The problem of motion estimation based on super resolution reconstruction of multiple images is addressed in this paper. This paper presents a motion projection onto convex set (POCS) algorithm to restore an image from multiple blurred images. The inter and intra pixel shifts are used to compute a joined point spread functi...
متن کاملMulti-frame Image Super-resolution Reconstruction based on Sparse Representation and POCS
Super-resolution image reconstruction algorithms produce a high-resolution image from one or a set of low-resolution images of the desired scene. In this paper, we present a novel two-stage super-resolution (SR) algorithm combined sparse signal representation with the projection onto convex sets (POCS). In the first stage, inspired by recent results in sparse signal representation, we get a hig...
متن کاملMulti-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملSuper-Resolution Reconstruction of Remote Sensing Images Using Multiple-Point Statistics and Isometric Mapping
When using coarse-resolution remote sensing images, super-resolution reconstruction is widely desired, and can be realized by reproducing the intrinsic features from a set of coarse-resolution fraction data to fine-resolution remote sensing images that are consistent with the coarse fraction information. Prior models of spatial structures that encode the expected features at the fine (target) r...
متن کاملSuper Resolution Using Graph-Cut
This paper addresses the problem of super resolution obtaining a single high-resolution image given a set of low resolution images which are related by small displacements. We employ reconstruction based approach using MRF-MAP formalism, and use approximate optimization using graph cuts to carry out the reconstruction. We also use the same formalism to investigate high resolution expansions fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017